Intracellular glucose switches between cyclic ADP-ribose and inositol trisphosphate triggering of cytosolic Ca2+ spiking

نویسندگان

  • Jose M. Cancela
  • Hideo Mogami
  • Alexei V. Tepikin
  • Ole H. Petersen
چکیده

Cyclic ADP-ribose (cADPR) is a potentially important intracellular Ca2+ releasing messenger [1-5]. In pancreatic acinar cells where intracellular infusion of both inositol trisphosphate (IP3) and cADPR evoke repetitive Ca2+ spiking [6], the cADPR antagonist 8-NH2-cADPR [7], which blocks cADPR-evoked but not IP3-evoked Ca2+ spiking, can abolish Ca2+ spiking induced by physiological levels of the peptide hormone cholecystokinin (CCK) [8]. We have tested the effect of intracellular glucose on the ability of IP3, cADPR and CCK to induce cytosolic Ca2+ spikes in pancreatic acinar cells. In order to gain access to the intracellular cytosol, we used the whole-cell configuration of the patch-clamp technique [9] and monitored cytosolic Ca2+ concentration changes by measuring the Ca(2+)-dependent ionic current [10-13]. Glucose (300 microM to 10 mM) in the patch pipette/intracellular solution prevented cADPR from evoking Ca2+ spiking. The same effect was observed with 2-deoxy-glucose, but not L-glucose. In contrast, glucose potentiated IP3-evoked Ca2+ spiking. CCK evoked Ca2+ spiking irrespective of the presence or absence of intracellular glucose, but the cADPR antagonist 8-NH2-cADPR blocked CCK-evoked Ca2+ spiking only in the absence of intracellular glucose. This suggests that the hormone can evoke Ca2+ spiking via either the IP3 or the cADPR pathway. The intracellular glucose level may control a switch between these two pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area.

Inositol trisphosphate and cyclic ADP-ribose release Ca2+ from the endoplasmic reticulum via inositol trisphosphate and ryanodine receptors, respectively. By contrast, nicotinic acid adenine dinucleotide phosphate may activate a novel Ca2+ channel in an acid compartment. We show, in two-photon permeabilized pancreatic acinar cells, that the three messengers tested could each release Ca2+ from t...

متن کامل

Inositol Trisphosphate and Cyclic ADP-Ribose–Mediated Release of Ca2+ from Single Isolated Pancreatic Zymogen Granules

In pancreatic acinar cells low (physiological) agonist concentrations evoke cytosolic Ca2+ spikes specifically in the apical secretory pole that contains a high density of secretory (zymogen) granules (ZGs). Inositol 1,4,5-trisphosphate (IP3) is believed to release Ca2+ from the endoplasmic reticulum, but we have now tested whether the Ca(2+)-releasing messengers IP3 and cyclic ADP-ribose (cADP...

متن کامل

Interactions between intracellular Ca2+ stores: Ca2+ released from the NAADP pool potentiates cADPR-induced Ca2+ release.

Cells possess multiple intracellular Ca2+-releasing systems. Sea urchin egg homogenates are a well-established model to study intracellular Ca2+ release. In the present study the mechanism of interaction between three intracellular Ca2+ pools, namely the nicotinic acid adenine dinucleotide phosphate (NAADP), the cyclic ADP-ribose (cADPR) and the inositol 1',4',5'-trisphosphate (IP3)-regulated C...

متن کامل

Ryanodine receptor expression is associated with intracellular Ca2+ release in rat parotid acinar cells.

The ryanodine receptor mediates intracellular Ca2+ mobilization in muscle and nerve, but its physiological role in nonexcitable cells is less well defined. Like adenosine 3',5'-cyclic monophosphate and inositol 1,4,5-trisphosphate, cyclic ADP-ribose (0.3-5 μM) and ADP (1-25 μM) produced a concentration-dependent rise in cytosolic Ca2+ in permeabilized rat parotid acinar cells. Adenosine and AMP...

متن کامل

Cyclic ADP-ribose activates caffeine-sensitive calcium channels from sea urchin egg microsomes.

Adenosine 5'-cyclic diphosphoribose [cyclic ADP-ribose (cADPR)], a metabolite of NAD+ that promotes Ca2+ release from sea urchin egg homogenates and microsomal fractions, has been proposed to act as an endogenous agonist of Ca2+ release in sea urchin eggs. We describe experiments showing that a microsomal fraction isolated from Tetrapigus nyger sea urchin eggs displayed Ca2+-selective single ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998